SIGACTION(2) | System Calls Manual | SIGACTION(2) |
int
sigaction(int sig, const struct sigaction * restrict act, struct sigaction * restrict oact);
Signal routines execute with the signal that caused their invocation blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (normally empty). It may be changed with a sigprocmask(2) call, or when a signal is delivered to the process. Signal masks are represented using the sigset_t type; the sigsetops(3) interface is used to modify such data.
When a signal condition arises for a process, the signal is added to a set of signals pending for the process. If the signal is not currently blocked by the process then it is delivered to the process. Signals may be delivered any time a process enters the operating system (e.g., during a system call, page fault or trap, or clock interrupt). If multiple signals are ready to be delivered at the same time, any signals that could be caused by traps are delivered first. Additional signals may be processed at the same time, with each appearing to interrupt the handlers for the previous signals before their first instructions. The set of pending signals is returned by the sigpending(2) function. When a caught signal is delivered, the current state of the process is saved, a new signal mask is calculated (as described below), and the signal handler is invoked. The call to the handler is arranged so that if the signal handling routine returns normally the process will resume execution in the context from before the signal's delivery. If the process wishes to resume in a different context, then it must arrange to restore the previous context itself.
struct sigaction includes the following members:
void (*sa_sigaction)(int sig, siginfo_t *info, void *ctx); void (*sa_handler)(int sig); sigset_t sa_mask; int sa_flags;
When a signal is delivered to a process a new signal mask is installed for the duration of the process' signal handler (or until a sigprocmask(2) call is made). This mask is formed by taking the union of the current signal mask, the signal to be delivered, and the signal mask associated with the handler to be invoked, sa_mask.
sigaction() assigns an action for a specific signal. If act is non-zero, it specifies an action (SIG_DFL, SIG_IGN, or a handler routine) and mask to be used when delivering the specified signal. If oact is non-zero, the previous handling information for the signal is returned to the user.
Once a signal handler is installed, it remains installed until another sigaction() call is made, or an execve(2) is performed. A signal-specific default action may be reset by setting sa_handler to SIG_DFL. The defaults are process termination, possibly with core dump; no action; stopping the process; or continuing the process. See the signal list below for each signal's default action. If sa_handler is set to SIG_DFL, the default action for the signal is to discard the signal, and if a signal is pending, the pending signal is discarded even if the signal is masked. If sa_handler is set to SIG_IGN, current and pending instances of the signal are ignored and discarded.
Options may be specified by setting sa_flags.
After a fork(2) or vfork(2) all signals, the signal mask, the signal stack, and the restart/interrupt flags are inherited by the child.
The execve(2) system call reinstates the default action for all signals which were caught and resets all signals to be caught on the user stack. Ignored signals remain ignored; the signal mask remains the same; signals that restart pending system calls continue to do so.
See signal(7) for comprehensive list of supported signals.
Only functions that are async-signal-safe can safely be used in signal handlers, see signal(7) for a complete list.
June 3, 2006 | NetBSD 6.1 |